

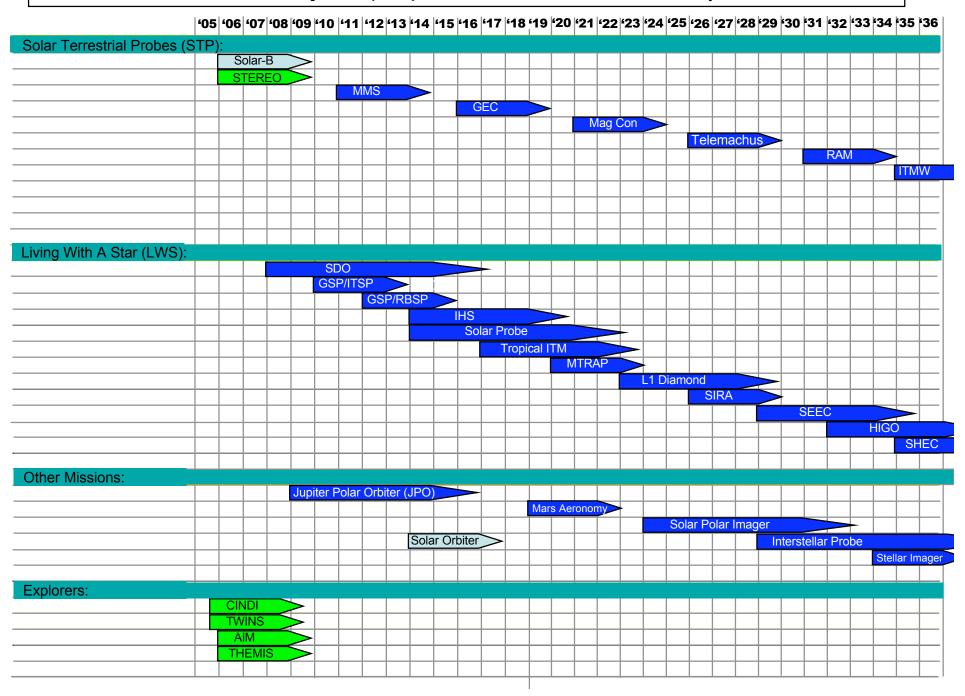
Introduction

- NASA organizes Earth-Sun System research into seven interdisciplinary science Focus areas
- Pursuing science questions can be addressed via remote sensing leads to potential approaches to acquiring observations from space
- Developed a discipline process to match science needs and technologies that coalesce around notional mission concepts
- Package contains
 - notional missions concepts with science objectives
 - measurement strategy
 - technology requirements
- Charts role up into time phase reflects only technology readiness and operating time - does not reflect science prioritization across focus area or make assumptions about budget availability

12/14/04

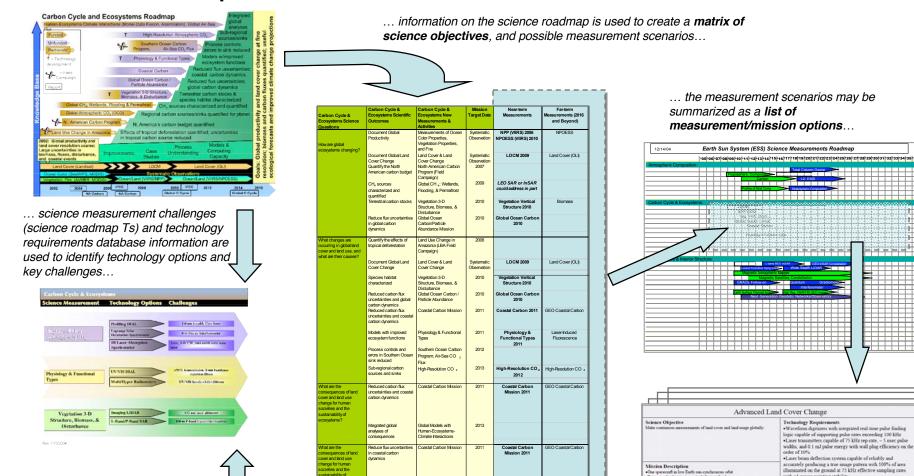
Earth Sun System (ESS) Science Measurements Roadmap

	'05	'06	'07	'08	'09	'10	'11	'12	'13	'14	'15	'16	'17	'18	'19	20 þ	21	22	23 12	24	'25 '	26	'27	'28	'29	'30	'31	'32	'33 '	34 	35	36
Atmospheric Composition:																																
														Tot	al Co	lumr	ı Oz	one		>												
					Trop	ospł	neric				<u>-</u>	Glob	al Tr	opos																		
							В	lack	Cart	on					L2	- EA	SI															
																				_												
							Profil	es of	Stra	t Con	np		\geq	Stra	itospl	neric	Com	positi	on		_									\rightarrow		
																	_		\rightarrow		_									\dashv	_	
Carbon Cycle & Ecosystem	ns:																															
		_					CM				\geq		Adva	anced	l Lan	d Cov	ver C	hang	е		-		_							\rightarrow	_	_
							P/VI			=	\geq								_	_	_	_	_							\dashv	\dashv	
							∕eg. \				=	>	Bi	oma				$\overline{}$					_							\dashv	\rightarrow	_
						Glo	bal O								Pro	iles	of O	cean	Part	icle	S									\dashv		_
								oasi	ai C	arbo		b De			J (0	asta	Car	pon			-					_			\vdash	\dashv	-+	_
							<u> </u>	voic!	0001			h Re			_			theti	c Effi	cier	1014		-					\vdash	\vdash	\dashv		-
		-	-					iysioi	ogy d	x Fur	CUOF	iai iy	pes		-	711010	JSyll	urieu	CEIII	Ciei	ICy		\dashv					\vdash		\rightarrow	-+	-
	-	-	-	-	\vdash			_							-	\rightarrow	\rightarrow	\rightarrow	\rightarrow	\dashv	\rightarrow	-	-			_		-	\vdash	\rightarrow	\rightarrow	—
								-								\rightarrow	\rightarrow	-	\rightarrow	\dashv	\rightarrow	\dashv	\dashv	_				\vdash		\rightarrow	\dashv	—
		-						_									-	-	-	\dashv	-									\dashv		-
Earth Surface & Interior St	ruct	uro.																														
Earth Surface & Interior St	luci	uie.				Lbar	od I EC	lnS/		L-b:	and M	MEO Ir	SAR				GEO	InS	AR Co	oneta	allatio	n d										
		-				L-Dai	nd LEC L-band	Form	nation	flying	InSA	R—	IOAIX	Wide	Sw	ath I	IDAF	R		JIISU										\dashv	-+	-
							Mag	netic	lone	nsnh	eric	Man	ner	TTTGG																\dashv	\dashv	-
							lviagi	GE) Ma	ane	tic S	atelli	tes (Cons	tellat	ion														+	\dashv	\dashv
						GF	RACE										vitv (Grad	iome	ter										\dashv	\dashv	-
																erfer			$\overline{}$				$\overline{}$							\dashv	\neg	-
						Earth	Surfa	ice T	herm	al Er	nissia)11							ger			\neg	\neg							\neg		-
								Nex	ct Ge	enera	ation	Geo	detic	: Net	work	s/Ot	serv	/ator	V						-					\dashv	\neg	-
																														一		
																				\neg										一		
																\neg			\neg	\neg										\neg		-
		İ														\neg	\neg			\neg										\neg	\neg	-


12/14/04

Earth Sun System (ESS) Science Measurements Roadmap

605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 635 636 Climate Variability & Change: Cloudsat/CALIPSO Aquarius Ocean Topography Ocean Struct. & Circ **OSTM** OCO HYDROS > Global Soil Moisture Ice Elevation Imager ICESat Follow-o Water & Energy Cycle: Cloudsat/CALIPSO LEO Cloud Svs Structu NPP HYDROS LEO Low-freq. Soil Moisture **GPM** LEO 3D Rain Profil Geosync Doppler Rain Geo Global Precip. **Cold Land Process** Weather: Cloudsat/CALIPSO OCO HYDROS Global Soil Moisture **GPM** Geo Global Precip. ⊢ Global Trop Winds **LEO Strat Aerosols** Atm. H2O, Temp & Press Ocean Surface Winds Geo Lightning Imager⊩


12/8/04

Earth Sun System (ESS) Science Measurements Roadmap

Starting with the **science** focus area **roadmap**...

Global Models with Human-Ecosystems-Climate Interactions

ampaign)

Human-Ecosystem-Climate Interactions (Model-Data Fusion,

similation); Global A

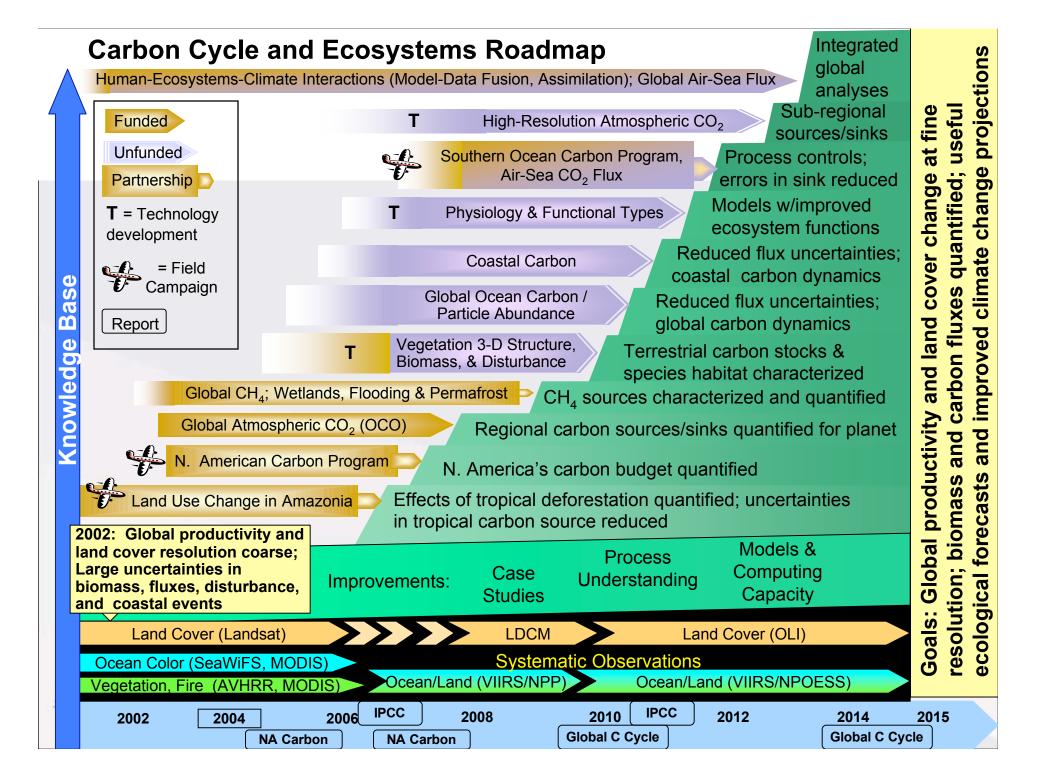
outhern Ocean carbo

Integrated global nalyses

STORM TOWN COMMISSION OF THE PROPERTY OF THE P

... and a "quad chart" of summary information prepared for each measurement/mission option...

mapping of the Earth's surface (vegetation and surface


Transmitte vegetation cases y temperature cover change, along with topographic change decentimeter relative vertical accuracy
 Discriminate a wide variety of vegetation types

+Characterize habitats

infinitization of the ground is 17 km, eleven's sampling raise with <1 arcsec pointing stability *Accurate w'c positioning (<5 cm raidal) from GPS and highly accurate orientation knowledge (<1 arcsec) using a combinatio of on-board star trackers and post-processed calibration.

-300 W instrument average power during mapping phase, les

Platform should be capable of 0-10 degree targeting

Carbon Cycle & Ecosystems Measurement

Carbon Cycle & Ecosystems Science Questions	Carbon Cycle & Ecosystems Scientific Outcomes	Carbon Cycle & Ecosystems New Measurements & Activities	Mission Target Date	Near-Term Measurements	Far-Term Measurements (2016 & Beyond)
	Document Global Productivity	Measurements of Ocean Color Properties, Vegetation Properties, and Fire	Systematic Observations	NPP (VIIRS) 2006 NPOESS (VIIRS) 2010	
How are global ecosystems changing?	Document Global Land Cover Change	Land Cover & Land Cover Change	Systematic Observations	LDCM 2009	Advanced Land Cover Change
	Quantify the North American carbon budget	North American Carbon Program (Field Campaign)	2007		
	CH ₄ sources characterized and quantified	Global CH ₄ ; Wetlands, Flooding, & Permafrost	2009		
	Terrestrial carbon stocks	Vegetation 3-D Structure, Biomass, & Disturbance	2010	Vegetation Vertical Structure 2010	Biomass
	Reduce flux uncertainties in global carbon dynamics	Global Ocean Carbon/Particle Abundance Mission	2010	Global Ocean Carbon 2010	Profiles of Ocean Particles
What changes are occurring in global	Quantify the effects of tropical deforestation	Land Use Change in Amazonia (LBA Field Campaign)	2006		
land cover and land use, and what are their causes?	Document Global Land Cover Change	Land Cover a& Land Cover Change	Systematic Observations	LDCM 2009	Advanced Land Cover Change
	Species habitat characterized	Vegetation 3-D Structure, Biomass, & Disturbance	2010	Vegetation Vertical Structure 2010	
	Reduce carbon flux uncertainties and global carbon dynamics	Global Ocean Carbon/Particle Abundance	2010	Global Ocean Carbon 2010	Profiles of Ocean Particles
	Reduce carbon flux uncertainties and coastal carbon dynamics	Coastal Carbon Mission	2011	Coastal Carbon 2011	GEO Coastal Carbon

Advanced Land Cover Change

Carbon Cycle & Ecosystems

Advanced Land Cover Change

Science Objective

Make continuous measurements of land cover and land usage globally

Mission Description

- •One spacecraft in low Earth sun-synchronous orbit
- •Determine land cover types, including wetlands
- •Determine vegetation characteristics

Measurement Strategy

- •Provide landscape-scale, <u>high-resolution</u>, <u>3-dimensional mapping</u> of the Earth's surface (vegetation and surface topography)
- •Measure vegetation canopy height, vertical structure and land cover change, along with topographic change detection at sub- centimeter relative vertical accuracy
- •Discriminate a wide variety of vegetation types
- Characterize habitats

Technology Requirements

- •Waveform digitizers with integrated real-time pulse finding logic capable of supporting pulse rates exceeding 100 kHz
- •<u>Laser transmitters</u> capable of 75 kHz rep-rate, ~ 5 nsec pulse widths, and 0.1 mJ pulse energy with wall plug efficiency on the order of 10%
- •Laser beam deflection system capable of reliably and accurately producing a true image pattern with 100% of area illuminated on the ground at 75 kHz effective sampling rates with <1 arcsec pointing stability
- •<u>Accurate s/c positioning</u> (< 5 cm radial) from GPS and highly accurate orientation knowledge (< 1 arcsec) using a combination of onboard star trackers and post-processed calibration
- \bullet ~300 W instrument average power during mapping phase, less during targeting phase.
- •Mechanically and thermally stable optical bench mounted to platform
- •Platform should be capable of 0-10 degree targeting
- •This instrument will produce very high data rates

Carbon Cycle & Ecosystems Measurement (cont'd)

Carbon Cycle & Ecosystems Science Questions	Carbon Cycle & Ecosystems Scientific Outcomes	Carbon Cycle & Ecosystems New Measurements & Activities	Mission Target Date	Near-Term Measurements	Far-Term Measurements (2016 & Beyond
What changes are occurring in global land	Models with improved ecosystems functions	Physiology & Functional Types	2011	Physiology & Functional Types 2011	Photosynthetic Efficiency
cover and land use, and what are their causes?	Process controls and errors in Southern Ocean sink reduced	Southern Ocean Carbon Program; Air-Sea CO2 Flux	2012		
	Sub-regional carbon sources and sinks	High-Resolution CO2	2013		High Resolution CO ₂
What are the consequences of land cover and land use change for human societies	Reduced carbon flux uncertainties and coastal carbon dynamics	Coastal Carbon Mission	2011	Coastal Carbon 2011	GEO Coastal Carbon
and the sustainability of ecosystems?	Integrated global analyses of consequences	Global Models with Human- Ecosystems-Climate Interactions	2013		
How do ecosystems, land cover, and biogeochemical	Reduce uncertainties in tropical carbon source	Land Use Change in Amazonia Field Campaign	2006		
cycles respond to and affect global environmental change?	Quantify North America's carbon budget	North American Carbon Program (Field Campaign)	2007		
	Quantify regional carbon sources/sinks on Earth	Orbiting Carbon Observatory Mission	2008	OCO 2008	High Resolution CO ₂
	Species habitat Characterized	Vegetation 3-D Structure, biomass, & Disturbance	2010	Vegetation Vertical Structure 2010	Advanced Land Cover Change

Photosynthetic Efficiency

Carbon Cycle & Ecosystems

Photosynthetic Efficiency

Science Objective

Quantify <u>marine and terrestrial productivity</u> and efficiency of the photosynthetic process

Mission Description

- Low earth orbit satellite
- Measure induced-fluorescence of compounds diagnostic of plant health to assess quantum efficiency of photosynthesis and environmental stress.
- Measure fluorescence from chlorophyll in a band centered on ~685 nm
- Measure fluorescence from phycoerythrin (found in marine phytoplankton) in the spectral region from 450-500 nm.
- Measure induced-fluorescence of chromophoric dissolved organic matter(CDOM) across a broad region of the blue-green spectrum.

Measurement Strategy

•Measure induced-fluorescence from terrestrial or ocean plant life

Technology Requirements

- •Compact, efficient, joule-class, solid state Nd:YAG laser transmitters
- •Associated harmonic generators
- •High efficiency solar and elastic-scattered radiation rejection filters (>95% transmission with 1-nm bandpass)
- •Meter-class lightweight optics
- •Multilinear diode arrays coupled to image intensifiers

Carbon Cycle & Ecosystems

Science Measurement

Technology Options

Challenges

High Resolution Atmospheric CO₂ **Profiling DIAL**

Lagrange Solar Occultation Spectrometer

IR Laser Absorption Spectrometer 1.6-um tunable fiber laser

8-m Fizeau Interferometer

2-um, 3-W CW, rare earth solid state laser

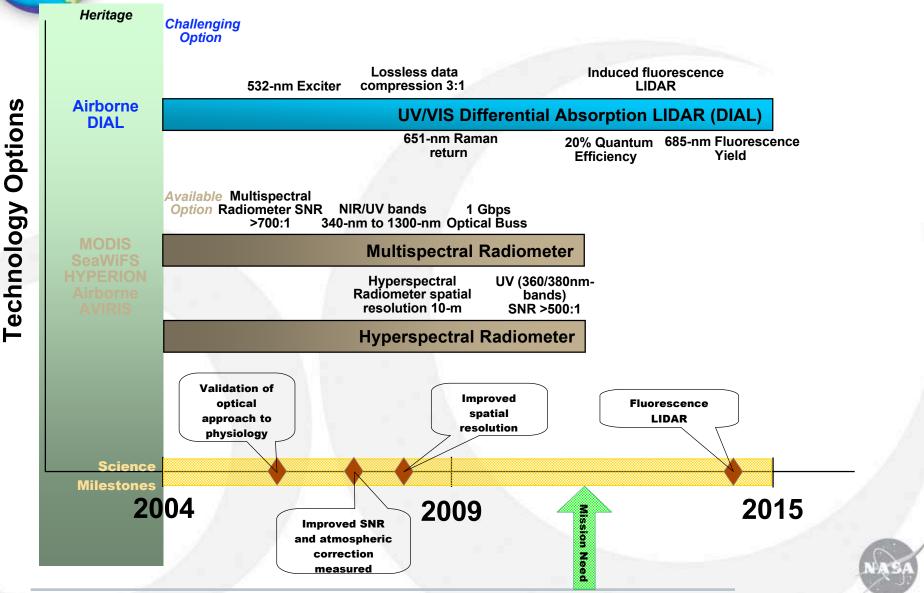
Physiology & Functional Types

UV/VIS DIAL

Multi/Hyper Radiometers

>95% transmission, 1-nm bandpass rejection filters

UV/NIR bands <340-1300-nm

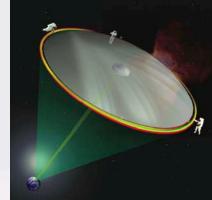

Vegetation 3-D Structure, Biomass, & Disturbance **Imaging LIDAR**

L-Band/P-Band SAR

532-nm laser altimeter

100-m P-band transmitter/receiver

Physiology & Functional Types



ES Technology Priorities

- Active Remote Sensing Technologies to enable atmospheric, cryospheric and earth surface measurements

- Large Deployables to enable future weather/climate/ natural hazards measurements

- Intelligent Distributed Systems using advanced communication, on-board reprogrammable processors, autonomous network control, data compression, high density storage

- **Information Knowledge Capture** through 3-D visualization, holographic memory and seamlessly linked models.

Conclusion

- We have developed initial list of science measurements from the six focus areas
- We have identified measurement scenarios and technology options
- We have targeted technology thrust areas for investments

